Anti-GD2 CAR-NKT cells in patients with relapsed or refractory neuroblastoma: an interim analysis

Clinical Trials & Research
  • 1.

    Godfrey, D. I., MacDonald, H. R., Kronenberg, M., Smyth, M. J. & Van Kaer, L. NKT cells: what’s in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Savage, A. K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Metelitsa, L. S. Anti-tumor potential of type-I NKT cells against CD1d-positive and CD1d-negative tumors in humans. Clin. Immunol. 140, 119–129 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Metelitsa, L. S. et al. Natural killer T cells infiltrate neuroblastomas expressing the chemokine CCL2. J. Exp. Med. 199, 1213–1221 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Song, L. et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest. 119, 1524–1536 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Tachibana, T. et al. Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin. Cancer Res. 11, 7322–7327 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Cortesi, F. et al. Bimodal CD40/Fas-dependent crosstalk between iNKT cells and tumor-associated macrophages impairs prostate cancer progression. Cell Rep. 22, 3006–3020 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Chang, D. H. et al. Sustained expansion of NKT cells and antigen-specific T cells after injection of alpha-galactosyl-ceramide loaded mature dendritic cells in cancer patients. J. Exp. Med. 201, 1503–1517 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Motohashi, S., Okamoto, Y., Yoshino, I. & Nakayama, T. Anti-tumor immune responses induced by iNKT cell-based immunotherapy for lung cancer and head and neck cancer. Clin. Immunol. 140, 167–176 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Exley, M. A. et al. Adoptive transfer of invariant NKT cells as immunotherapy for advanced melanoma: a phase I clinical trial. Clin. Cancer Res. 23, 3510–3519 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Heczey, A. et al. Invariant NKT cells with chimeric antigen receptor provide a novel platform for safe and effective cancer immunotherapy. Blood 124, 2824–2833 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Rotolo, A. et al. Enhanced anti-lymphoma activity of CAR19-iNKT cells underpinned by dual CD19 and CD1d targeting. Cancer Cell 34, 596–610 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Tahir, S. M. et al. Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Tian, G. et al. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J. Clin. Invest. 126, 2341–2355 (2016).

    Article 

    Google Scholar
     

  • 16.

    Schulz, G. et al. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 44, 5914–5920 (1984).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Heczey, A. et al. CAR T cells administered in combination with lymphodepletion and PD-1 inhibition to patients with neuroblastoma. Mol. Ther. 25, 2214–2224 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Liu, D. et al. IL-15 protects NKT cells from inhibition by tumor-associated macrophages and enhances antimetastatic activity. J. Clin. Invest. 122, 2221–2233 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Xu, X., et al. NKT cells co-expressing a GD2-specific chimeric antigen receptor and IL-15 show enhanced in vivo persistence and antitumor activity against neuroblastoma. Clin. Cancer Res. 25, 7126–7138 (2019).

  • 20.

    Cohn, S. L. et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J. Clin. Oncol. 27, 289–297 (2009).

    Article 

    Google Scholar
     

  • 21.

    Ghassemi, S. et al. Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunol. Res. 6, 1100–1109 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Gattinoni, L. et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J. Exp. Med. 202, 907–912 (2005).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Park, J. R. et al. Revisions to the international neuroblastoma response criteria: a consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. J. Clin. Oncol. 35, 2580–2587 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Decarolis, B. et al. Iodine-123 metaiodobenzylguanidine scintigraphy scoring allows prediction of outcome in patients with stage 4 neuroblastoma: results of the Cologne Interscore Comparison Study. J. Clin. Oncol. 31, 944–951 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Ngai, H. et al. IL-21 selectively protects CD62L+ NKT cells and enhances their effector functions for adoptive immunotherapy. J. Immunol. 201, 2141–2153 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Stoeckius, M. et al. Cell hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 19, 224 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Guo, X. et al. Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat. Med. 24, 978–985 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Zhang, L. et al. Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature 564, 268–272 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Articles You May Like

    Pfizer to Commence First COVID-19 Vaccine Study Involving Minors: Cincinnati Children’s Hospital Trial Site Discussion
    Spike protein of SARS-CoV-2 virus identifies and binds neuropilin-1 on human cells to infect them
    How Much Risk Is OK for Olanzapine Product With Less Weight Gain?
    In-line Flow Meters for Pure Water Dispensing
    Support programme worth £300k available for health innovations